Optimizing the thermoelectric transport properties of fast ionic conductor β -Ag2S under high pressure and high temperature

Author:

Zhao Wei1,Cheng Jiaen1,Li Yan1ORCID,Ye Meiyan1,Wang Dianzhen1,Wang Lu1,Gai Xinmiao1ORCID,You Cun1,Qu Xin2ORCID,Tao Qiang1ORCID,Zhu Pinwen1ORCID

Affiliation:

1. Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University 1 , Changchun 130012, China

2. Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University 2 , Changchun 130103, China

Abstract

Inorganic fast ionic thermoelectric (TE) materials (IFITEMs) exhibit excellent TE capabilities due to the special carrier of delocalized ions. Optimization of the TE performance of an IFITEM, however, is limited by a conflict between its electrical conductivity (σ) and its Seebeck coefficient (S). It remains challenging to regulate σ and S in IFITEMs because they are mainly only stable under high temperature. In this work, σ and S of α-Ag2S (semiconductor) and β-Ag2S (fast ionic conductor) are modulated by the in situ measurement under high pressure and high temperature. It uncovered that pressure increases the electrical conductivity with improving the carrier concentration in α-Ag2S, but increased pressure hinders ion transfer and thus reduces conductivity in β-Ag2S. These results show that the pressure responses of σ and S in α-Ag2S and β-Ag2S are distinctly opposite. Nevertheless, pressure can optimize the power factor (PF) and estimated thermoelectric figure of merit (ZT) in both α-Ag2S and β-Ag2S, with optimum values of 1.97 × 10−4 W/m K2 and 0.122 (3.3 GPa, 447 K), and 2.93 × 10−4 W/m K2 and 0.18 (2.2 GPa, 574 K), respectively. The pressure effect has improved about 4.5 and 3.6 times in PF and ZT of β-Ag2S comparing with α-Ag2S at 0.8 GPa 436 K. This work provides a way to optimize TE performance in fast ionic conductors by altering the pressure, which will help in the production of high-powered TE materials.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

National Key Research and Development Program of China

Program for the development of Science and Technology of Jilin province

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3