Identifying the charge states of carbon vacancies in 4H-SiC by ab initio metadynamics

Author:

Huang Yuanchao12ORCID,Jiang Xuanyu12ORCID,Deng Tianqi12ORCID,Yang Deren12ORCID,Pi Xiaodong12ORCID

Affiliation:

1. State Key Laboratory of Silicon and Advanced Semiconductor Materials & School of Materials Science and Engineering, Zhejiang University 1 , Hangzhou, Zhejiang 310027, China

2. Institute of Advanced Semiconductors & Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University 2 , Hangzhou, Zhejiang 311215, China

Abstract

4H Silicon carbide (4H-SiC) is widely recognized as a highly promising material for high-voltage and high-power electronic applications due to its exceptional properties. The performance of devices based on 4H-SiC is often weakened by the presence of carbon-related point defects, particularly carbon vacancies (VC). The defects of VC introduce deep-level traps (e.g., Z1/2 and EH6/7) that deteriorate device functionality. Experimental and theoretical studies on VC have led to some conflicting results about the charge states of VC, especially for the charge state ordering of EH6/7. We now employ ab initio metadynamics (META) to systematically investigate configuration space including the direction and magnitude of bond distortion and identify the most stable structures of VC. Eventually, the charge states of VC in 4H-SiC are identified. The Z1 (EH6) and Z2 (EH7) indicate transitions from acceptor (donor) levels of VC, located on the h and k sublattice sites, respectively. Z1 and Z2 demonstrate negative-U ordering, characterized by U values of −0.16 and −0.37 eV, respectively. Conversely, EH6 and EH7 display positive-U ordering, with U values of 0.16 and 0.08 eV, respectively. The current results provide insights into the properties of VC in 4H-SiC, highlighting the effectiveness of META in the exploration of complex potential energy surfaces associated with point defects in solids.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3