Affiliation:
1. Department of Mechanics, Beijing Institute of Technology, Beijing 100081, China
2. School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract
This paper investigates the dynamical response and vibrational resonance (VR) of a piecewise electromechanically coupled tri-stable energy harvester (TEH), which is driven by dual-frequency harmonic excitations. To achieve a stable DC output, the TEH is interfaced with a standard rectifier circuit. Using the harmonic balance method combined with the separation of fast and slow variables, a steady-state response together with the analytical expressions of displacement and harvested power is derived. The multi-solution feature in the amplitude–frequency response is observed and can improve the harvesting performance of the TEH under a low-frequency environment. There is an optimal time constant ratio and electromechanical coupled coefficient to maximize the harvested DC power. Meanwhile, the VR phenomenon of the TEH is explored through the response amplitude of the low-frequency input signal, which implies that an appropriate combination can induce the occurrence of VR and improve the rectified voltage. Similarly, the nonlinear stiffness coefficients can be adjusted by changing the magnet distance to induce the appearance of VR. The theoretical solutions are well supported by numerical simulation and experimental verification. Specifically, the theoretical analysis and experimental evidence illustrate that the harvested power under the VR effect is much higher than that without VR.
Funder
Natural Science Foundation of Beijing Municipality
National Natural Science Foundation of China-China Academy of General Technology Joint Fund for Basic Research
Subject
Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献