Enhanced dielectric properties of Be-doped magnesium oxide nanopowder

Author:

Lee Sang-hwa1ORCID,Jeon Young Pyo1,Lee Eun Jung1,Lee Young Jun1,Cho Tae Woong1ORCID,Kim Gyung Hyun1ORCID,Ko Eunseo1,Park Ju Sang1ORCID,Moon Young Il2,Park Sang Yoon1ORCID,Yoo Young Joon1ORCID

Affiliation:

1. Advanced Institute of Convergence Technology, Seoul National University 1 , Gyeonggi-do 16229, Korea

2. Department of Electrical Engineering, Pohang University of Science and Technology 2 , Pohang 37673, Korea

Abstract

Owing to its applicability in refractory ceramic synthesis, nanoelectronics, optoelectronic and sensing devices, and superconducting products, magnesium oxide (MgO) is recognized to be an important ceramic material. However, it has a relatively low dielectric constant compared to other metal oxide semiconductors, which restricts the range of its bandgap and limits its applicability. Therefore, in this study, we propose and verify a method to improve the dielectric constant of MgO. A sample of MgO powder doped with Be ions was prepared using the Pechini method. The crystal structure of the doped MgO powder was analyzed by x-ray diffraction. Through structural analysis, it was confirmed that a substitution amount of up to 5% of Be ions was possible without breaking the cubic structure. The bonding structure in the lattice of the sample was identified through x-ray photoelectron spectroscopy, and the change in the bonding structure according to the amount of substitution was identified. The dielectric properties of the samples were analyzed as a function of frequency at room temperature. The real and imaginary parts of the dielectric constant were studied at room temperature as a function of frequency and composition. It was confirmed that the dielectric constant increased as the Be ions were substituted. Our results show that improving the low dielectric properties of pure MgO can enable its application to wide bandgap and high voltage applications simultaneously.

Funder

National Research Foundation of Korea

Ministry of Trade, Industry and Energy

Materials, Components and Equipment Research Program Funded by the Gyeonggi Province

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3