The rise and fall of banana puree: Non-Newtonian annular wave cycle in transonic self-pulsating flow

Author:

Wilson D. M.1ORCID,Strasser W.1ORCID

Affiliation:

1. School of Engineering, Liberty University, Lynchburg, Virginia 24515, USA

Abstract

We reveal mechanisms driving pre-filming wave formation of the non-Newtonian banana puree inside a twin-fluid atomizer at a steam–puree mass ratio of 2.7%. Waves with a high blockage ratio form periodically at a frequency of 1000 Hz, where the collapse of one wave corresponds to the formation of another (i.e., no wave train). Wave formation and collapse occur at very regular intervals, while instabilities result in distinctly unique waves each cycle. The average wave angle and wavelength are 50° and 0.7 nozzle diameters, respectively. Kelvin–Helmholtz instability (KHI) dominates during wave formation, while pressure effects dominate during wave collapse. An annular injection of the puree into the steam channel provides a wave pool, allowing KHI to deform the surface; then, steam shear and acceleration from decreased flow area lift the newly formed wave. The onset of flow separation appears to occur as the waves' rounded geometry transitions to a more pointed shape. Steam compression caused by wave sheltering increases pressure and temperature on the windward side of the wave, forcing both pressure and temperature to cycle with wave frequency. Wave growth peaks at the nozzle exit, at which point the pressure build-up overcomes inertia and surface tension to collapse and disintegrate the wave. Truncation of wave life by pressure build-up and shear-induced puree viscosity reduction is a prominent feature of the system, and steam turbulence does not contribute significantly to wave formation. The wave birth-death process creates bulk system pulsation, which, in turn, affects wave formation.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3