Gas–liquid twin-fluid atomization from non-circular orifices

Author:

Liu ChangORCID,Wu KunORCID,Zhang PengORCID,Fan Xuejun

Abstract

Passive control of twin-fluid atomization can be achieved by changing the orifice shape of the injector. In this study, the characteristics of twin-fluid atomization in the outside-in-liquid injector with circular, square, and rectangular orifices at various aspect ratios were investigated experimentally and computationally. The morphology of the spray was captured by shadowgraph, the diameter and velocity of the droplets were measured by the phase Doppler particle analyzer, and numerical simulations were performed for the central gaseous core. Comparing the sprays with square and circular orifices, droplets from the non-circular orifice are generally smaller with less disparities in droplet sizes due to the more intensive turbulent disturbances and corner effect. Furthermore, the non-circular orifice also results in better spatial distribution of the spray. The droplet diameters of the spray with a square orifice do not satisfy the log-normal distribution near the orifice along the centerline of the spray, which may be attributed to the different entrainment of spray droplets by the central gas flow for the sprays with circular and non-circular orifices. The twin-fluid sprays produced by the rectangular orifice also exhibit the same axial switching effect as in the high-pressure gaseous jet flow, in which the spray diffusion in the minor axis is more extensive than that in the major axis. Moreover, the droplets' Sauter mean diameter produced by the rectangular orifice is more sensitive to the size in the minor axis of the orifice and decreases as the aspect ratio of the orifice increases given the same cross-sectional area.

Funder

High-level Innovation Research Institute Program of Guangdong Province

Research Grants Council of the Hong Kong Special Administrative Region

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3