Multiplex network disintegration strategy inference based on deep network representation learning

Author:

Zeng Chengyi1ORCID,Lu Lina1,Liu Hongfu1ORCID,Chen Jing1,Zhou Zongtan1

Affiliation:

1. College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, People’s Republic of China

Abstract

Multiplex networks have attracted more and more attention because they can model the coupling of network nodes between layers more accurately. The interaction of nodes between layers makes the attack effect on multiplex networks not simply a linear superposition of the attack effect on single-layer networks, and the disintegration of multiplex networks has become a research hotspot and difficult. Traditional multiplex network disintegration methods generally adopt approximate and heuristic strategies. However, these two methods have a number of drawbacks and fail to meet our requirements in terms of effectiveness and timeliness. In this paper, we develop a novel deep learning framework, called MINER (Multiplex network disintegration strategy Inference based on deep NEtwork Representation learning), which transforms the disintegration strategy inference of multiplex networks into the encoding and decoding process based on deep network representation learning. In the encoding process, the attention mechanism encodes the coupling relationship of corresponding nodes between layers, and reinforcement learning is adopted to evaluate the disintegration action in the decoding process. Experiments indicate that the trained MINER model can be directly transferred and applied to the disintegration of multiplex networks with different scales. We extend it to scenarios that consider node attack cost constraints and also achieve excellent performance. This framework provides a new way to understand and employ multiplex networks.

Funder

National Natural Science Foundation of China

Scientific Research Plan of National University of Defense Technology

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3