When Optimization Meets AI: An Intelligent Approach for Network Disintegration with Discrete Resource Allocation

Author:

Li Ruozhe1ORCID,Yuan Hao1,Ren Bangbang1,Zhang Xiaoxue1,Chen Tao1,Luo Xueshan1

Affiliation:

1. National Key Laboratory of Information Systems Engineering, National University of Defense Technology, Changsha 410073, China

Abstract

Network disintegration is a fundamental issue in the field of complex networks, with its core in identifying critical nodes or sets and removing them to weaken network functionality. The research on this problem has significant strategic value and has increasingly attracted attention, including in controlling the spread of diseases and dismantling terrorist organizations. In this paper, we focus on the problem of network disintegration with discrete entity resources from the attack view, that is, optimizing resource allocation to maximize the effect of network disintegration. Specifically, we model the network disintegration problem with limited entity resources as a nonlinear optimization problem and prove its NP-hardness. Then, we design a method based on deep reinforcement learning (DRL), Net-Cracker, which transforms the two-stage entity resource and network node selection task into a single-stage object selection problem. Extensive experiments demonstrate that compared with the benchmark algorithm, Net-Cracker can improve the solution quality by about 8∼62%, while enabling a 30-to-160-fold speed up. Net-Cracker also exhibits strong generalization ability and can find better results in a near real-time manner even when the network scale is much larger than that in training data.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference56 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3