Computational study of flow separation in truncated ideal contour nozzles under high-altitude conditions

Author:

Muhammed Ijas1,N Shamsia Banu1,Suryan Abhilash1ORCID,Lijo Vincent2,Simurda David3ORCID,Kim Heuy Dong4

Affiliation:

1. College of Engineering Trivandrum 1 , Kerala 695016, India

2. Government Engineering College Thrissur 2 , Kerala 680 009, India

3. Faculty of Mechanical Engineering, Technical University of Liberec 3 , Liberec 461 17, Czech Republic

4. Andong National University 4 , Andong 36729, Republic of Korea

Abstract

Flow separation in rocket nozzles has been studied mostly under sea-level conditions, which fail to take into account changes in ambient density and ambient pressure during the flight of a rocket. In the present study, numerical analysis is conducted of flow characteristics within a truncated ideal contour (TIC) nozzle to investigate the influence of ambient density and pressure on flow separation. Six different altitudes from a typical flight are considered, from a very low altitude to a high altitude. The flow is analyzed by varying the nozzle pressure ratios corresponding to these altitudes. Both cold flow and hot flow simulations are conducted. The locations of separation positions at various altitude conditions are accurately captured and are found to be in good agreement with experimental results. The results of the study establish that for a given nozzle pressure ratio, the flow separation point is shifted upstream with increasing altitude. This clearly points to a dependence of separation position on the altitude of operation for TIC rocket nozzles.

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3