Development of Mathematical Model for Coupled Dynamics of Small-Scale Ocean Current Turbine and Generator to Optimize Hydrokinetic Energy Harvesting Applications

Author:

Rouhi Shahab12,Sadeqi Setare12,Xiros Nikolaos I.1,Aktosun Erdem3ORCID,Birk Lothar1ORCID,Ioup Juliette2

Affiliation:

1. Bollinger School of Naval Architecture & Marine Engineering, University of New Orleans, 2000 Lakeshore Dr, New Orleans, LA 70148, USA

2. Department of Physics, University of New Orleans, New Orleans, LA 70148, USA

3. Department of Shipbuilding and Ocean Engineering, İzmir Kâtip Çelebi University, Izmir 35620, Türkiye

Abstract

The primary goal of this study is to develop and test a small-scale horizontal-axis underwater Ocean Current Turbine (OCT) by creating a mathematical model for coupled dynamics aided by a Blade Element Momentum (BEM) simulation-integrated experimental approach. This research is motivated by the urgent need for sustainable energy sources and the vast potential of ocean currents. By integrating mathematical modeling with the experimental testing of scaled model OCTs, this study aims to evaluate performance accurately. The experimental setup involves encapsulating a 3D-printed turbine model within a watertight nacelle which is equipped with sensors for comprehensive data recording during towing tank tests. Through these experiments, we seek to establish correlations between the generated power, force, and rotational speed of the turbine’s Permanent Magnet DC (PMDC) motor, which determines the turbine’s capability to extract dynamic energy inflow. Moreover, this research aims to provide valuable insights into the accuracy and applicability of theoretical predictions in real-world scenarios by comparing the experimental results with BEM simulations. This combined approach not only advances our understanding of hydrokinetic energy conversion, but also contributes to the development of reliable and efficient renewable energy technologies that address global energy challenges while mitigating environmental impacts.

Funder

National Science Foundation

Greater New Orleans Development Foundation

U.S. Economic Development Administration

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3