Experimental and Computational Fluid Dynamic Study of Water Flow and Submerged Depth Effects on a Tidal Turbine Performance

Author:

Ghamati Erfan1,Kariman Hamed2,Hoseinzadeh Siamak3ORCID

Affiliation:

1. Department of Mechanical and Energy Engineering, Shahid Beheshti University, Tehran 19839 69411, Iran

2. School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia

3. Department of Planning, Design, and Technology of Architecture, Sapienza University of Rome, 00185 Rome, Italy

Abstract

This study involves an experimental and numerical analysis of the Hunter turbine, a vertical axis turbine utilized for tidal energy. A laboratory model of the Hunter turbine, featuring an aspect ratio of 1.2, was designed and tested. Numerical equations, including the Reynolds-averaged Navier–Stokes (RANS) constant, were analyzed through computational fluid dynamics (CFD) software using the k-ω turbulence model to forecast turbine performance and other related flow specifications, such as pressure lines, stream velocity, and pressure. This simulation was conducted on the surface of the turbine blade, and the results were obtained accordingly. The experimental data were utilized to verify the numerical results, and the difference between the two was reasonably acceptable. The turbine was studied in six different flow coefficients and four different vertical positions. The results indicated that the power coefficient increased as the submerged depth from a water-free surface increased, and after a specific depth, the output power remained constant. It was also observed that the minimum depth from a water-free surface for maximum power coefficient was three times the diameter of the turbine drum (3D).

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3