Negative bias stress stable PtOx/InGaZnOx Schottky barrier diodes optimized by oxygen annealing

Author:

Li Haoxin1ORCID,Han Zhao1ORCID,Zhou Xuanze1ORCID,Xu Guangwei1ORCID,Long Shibing1ORCID

Affiliation:

1. School of Microelectronics, University of Science and Technology of China , Hefei 230026, China

Abstract

In this work, bottom-Schottky-structure InGaZnOx (IGZO) Schottky barrier diodes (SBDs) with sputtered PtOx anodes were fabricated and annealed in oxygen at different temperatures. Critical parameters and negative bias stress (NBS) stability of SBDs with different annealing temperatures are investigated. With the annealing temperature increases, the barrier height and rectification ratio of the SBDs exhibited a rising-then-declining trend, while the ideality factor slightly increased until 200 °C. The SBDs show up overall reliability except for a leakage current rising trend under light, which can be attributed to free electron generation from the ionized oxygen vacancy. Among all the SBDs, the 175 °C annealed ones exhibited the best overall performance, including a high barrier height of 0.89 eV, an ideality factor of 1.14, and a large rectification ratio of over 108. Compared to the initial SBDs, the annealed ones showed up great improvement in NBS stability except for the 200 °C annealed ones, which was permanently degraded and not able to recover to original states. According to experimental result analysis and IGZO material characteristics, a stability model based on the subgap trap transition from VO2+ to VO and new VO2+ creation was proposed, which applies to both the short-term and long-term NBS tests. The results above demonstrate that oxygen annealing at appropriate temperature is an effective method to improve both device performance and NBS stability for PtOx–IGZO SBDs.

Funder

National Natural Science Foundation of China

University of Science and Technology of China

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3