Resistive switching polarity reversal due to ferroelectrically induced phase transition at BiFeO3/Ca0.96Ce0.04MnO3 heterostructures

Author:

Yu Wenhao1ORCID,Chen Luqiu1ORCID,Liu Yifei1ORCID,Tian Bobo12ORCID,Zhu Qiuxiang123ORCID,Duan Chungang14ORCID

Affiliation:

1. Key Laboratory of Polar Materials and Devices (MOE), Ministry of Education, Department of Electronics, East China Normal University 1 , Shanghai 200241, China

2. Zhejiang Lab 2 , Hangzhou 310000, China

3. Guangdong Provisional Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology 3 , Shenzhen 518055, China

4. Collaborative Innovation Center of Extreme Optics, Shanxi University 4 , Shanxi 030006, China

Abstract

Ferroelectric resistive switching (RS) devices with functional oxide electrodes allow controlled emergent phenomena at an interface. Here, we demonstrate RS polarity reversal due to ferroelectrically induced phase transition at a doped charge transfer insulator interface. For BiFeO3/Ca0.96Ce0.04MnO3 bilayers grown on a NdAlO3 substrate, by applying voltages to a Ca0.96Ce0.04MnO3 bottom electrode, the resistance changes from a high resistance state (HRS) to a low resistance state (LRS) during a positive voltage cycle (0 → 3 → 0 V), and from a LRS to a HRS during a negative voltage cycle (0 → −3 → 0 V). The RS polarity is completely opposite the expected RS behavior in ferroelectric heterostructures induced by polarization reversal. It is proposed that the unique resistance switching polarity is attributed to the band-filling controlled metal-insulator transition in a Ca0.96Ce0.04MnO3 film, triggered by ferroelectric based electrostatic doping. The results address the importance of ferroelectric field effect on the electronic properties of the interfacial system in ferroelectric/complex oxide-based resistive memory devices.

Funder

Guangdong Province Key Laboratory Program

National Natural Science Foundation of China

Shanghai Pujiang Program

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3