A simple efficient algorithm for molecular simulations of constant potential electrodes

Author:

Sitlapersad Ranisha S.1ORCID,Thornton Anthony R.1ORCID,den Otter Wouter K.1ORCID

Affiliation:

1. Department of Fluid and Thermal Engineering and MESA+ Institute for Nanotechnology, University of Twente , Enschede, The Netherlands

Abstract

Increasingly, society requires high power, high energy storage devices for applications ranging from electric vehicles to buffers on the electric grid. Supercapacitors are a promising contribution to meeting these demands, though there still remain unsolved practical problems. Molecular dynamics simulations can shed light on the relevant molecular level processes in electric double layer capacitors, but these simulations are computationally very demanding. Our focus here is on the algorithmic complexity of the constant potential method (CPM), which uses dedicated electrostatics solvers to maintain a fixed potential difference between two conducting electrodes. We show how any standard electrostatics solver—capable of calculating the energies and forces on all atoms—can be used to implement CPM with a minimum of coding. As an example, we compare our generalized implementation of CPM, based on invocations of the particle–particle–particle–mesh routine of the Large-scale Atomic/Molecular Massively Parallel Simulator, with a traditional implementation based on a dedicated re-implementation of Ewald summation. Both methods yield comparable results on four test systems, with the former achieving a substantial gain in speed and improved scalability. The step from dedicated electrostatic solvers to generic routines is made possible by noting that CPM’s traditional narrow Gaussian point-spread of atomic charges on the electrodes effectively endows point-like atoms with chemical hardness, i.e., an intra-atomic energy quadratic in the charge.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Charging and discharging a supercapacitor in molecular simulations;The Journal of Chemical Physics;2024-01-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3