Charging and discharging a supercapacitor in molecular simulations

Author:

Sitlapersad Ranisha S.1ORCID,Thornton Anthony R.1ORCID,den Otter Wouter K.1ORCID

Affiliation:

1. Department of Fluid and Thermal Engineering and MESA+ Institute for Nanotechnology, University of Twente , Enschede, The Netherlands

Abstract

As the world moves more toward unpredictable renewable energy sources, better energy storage devices are required. Supercapacitors are a promising technology to meet the demand for short-term, high-power energy storage. Clearly, understanding their charging and discharging behaviors is essential to improving the technology. Molecular Dynamics (MD) simulations provide microscopic insights into the complex interplay between the dynamics of the ions in the electrolyte and the evolution of the charge distributions on the electrodes. Traditional MD simulations of (dis)charging supercapacitors impose a pre-determined evolving voltage difference between the electrodes, using the Constant Potential Method (CPM). Here, we present an alternative method that explicitly simulates the charge flow to and from the electrodes. For a disconnected capacitor, i.e., an open circuit, the charges are allowed to redistribute within each electrode while the sum charges on both electrodes remain constant. We demonstrate, for a model capacitor containing an aqueous salt solution, that this method recovers the charge–potential curve of CPM simulations. The equilibrium voltage fluctuations are related to the differential capacitance. We next simulate a closed circuit by introducing equations of motion for the sum charges, by explicitly accounting for the external circuit element(s). Charging and discharging of the model supercapacitor via a resistance proceed by double exponential processes, supplementing the usual time scale set by the electrolyte dynamics with a novel time scale set by the external circuit. Finally, we propose a simple equivalent circuit that reproduces the main characteristics of this supercapacitor.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

AIP Publishing

Reference56 articles.

1. Materials for electrochemical capacitors,2010

2. Applications of supercapacitors;Kar,2020

3. Supercapacitors and its enactment for renewable energy resources;3C Tecnología

4. Ionic liquids in supercapacitors;MRS Bull.,2013

5. A review of molecular modelling of electric double layer capacitors;Phys. Chem. Chem. Phys.,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3