Enhancing terahertz magneto-optical effects in wafer-scale RIG single crystal thick films with anti-reflective coatings for improved transmittance

Author:

Xue Qiang12ORCID,Zhang Yuan-Jing1,Yang Qing-Hui1ORCID,Zhang Huai-Wu1,Wen Qi-Ye12ORCID

Affiliation:

1. School of Electronic Science and Engineering, State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China 1 , Chengdu, Sichuan 610054, People’s Republic of China

2. Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China 2 , Huzhou, Zhejiang 313001, People’s Republic of China

Abstract

Wafer-scale rare-earth iron garnet (RIG) single crystal thick films were fabricated on 3-in. gadolinium gallium garnet (GGG) substrates using liquid phase epitaxy. The terahertz transmittance of the RIG crystals improved after removing the GGG substrate by polishing. The time-domain spectra at Terahertz (THz) frequencies indicate the existence of a magneto-optical effect in RIG samples. The results indicate that the RIG samples exhibit a high refractive index of ∼4.50 within the 0.1–1.0 THz frequency range, a transmittance of around 40%, and an absorption rate of only 10–50 cm−1. The Faraday rotation angles of the thick single-crystal films of the RIG samples were measured using a THz-TDS system. The RIG has a thickness of ∼330 μm. The Faraday rotation angles of RIG crystals at THz frequencies can reach up to 16° when an external magnetic field of 0.18 T is applied. The Verdet constants of the RIG sample were calculated to be ∼120°/mm/T. To improve the transmittance of the RIG sample, epoxy resin and polymethylpentene (TPX) were used as anti-reflective films. The transmittance of the RIG sample increased by ∼5% for the 80 μm thick epoxy and about 10% for the 320 μm thick TPX. Therefore, this RIG single crystal thick film can achieve a low loss, a high transmittance, and a strong magneto-optical effect in the terahertz region with the cooperation of a reflection-reducing film. It is expected to have wide applications in terahertz magnetic polarization conversion, non-reciprocal phase shifters, and isolators.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Sichuan Science and Technology Support Program

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3