Optical Pump Terahertz Probe (OPTP) and Time Resolved Terahertz Spectroscopy (TRTS) of emerging solar materials

Author:

Neu Jens1ORCID

Affiliation:

1. Department of Physics, University of North Texas (UNT) , Denton, Texas 76201, USA

Abstract

Photoconductivity is the crucial benchmark to assess the potential of any emerging material for future solar applications. Many optical techniques, like transient absorption and photoluminescence, explore bound electron states and provide indirect access to photoconductivity. Direct current (DC) measurements under solar simulation determine the total performance of a novel solar device. While this technique has a clear appeal, it involves electrical contacts, causing contact resistance, which impacts the measured conductivity. Furthermore, DC measurements do not provide any insight into ultrafast effects and the photophysics defining a novel material. Terahertz (THz) spectroscopy presents a contact-free technique to measure photoconductivity on a sub-ps time scale. These measurements can be performed on as-synthesized sample materials, including powders. The ultrafast time resolution informs us of trapping dynamics and reveals what physical processes limit the carrier lifetime in a novel material. Additionally, complex conductivity can be measured at THz frequencies. THz-conductivity and photoconductivity shed light on scattering effects, providing a road map toward minimizing these effects. However, THz spectroscopy is less intuitive than widely used DC measurements, and the interpretation of THz-results is more challenging. This tutorial aims to familiarize the reader with the main THz techniques used to explore emerging materials. We will illustrate how carrier lifetimes can be extracted from optical pump THz probe measurements. We will guide the reader through the process of extracting accurate photoconductivities from time resolved THz spectroscopy measurements and present the most commonly used models to describe the underlying physics. We will then discuss the difference between sample and material parameters and highlight potential pitfalls. The tutorial concludes with a perspective view on the ever evolving field of optical pump-THz probe spectroscopy of emerging materials.

Publisher

AIP Publishing

Subject

Computer Networks and Communications,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3