Influence of the interaction of capillary waves on the dynamics of two drops falling side-by-side on a liquid pool

Author:

Kirar Pavan Kumar1ORCID,Pokale Sumedha D.2ORCID,Sahu Kirti Chandra1ORCID,Ray Bahni3ORCID,Biswas Gautam2ORCID

Affiliation:

1. Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi 502 284, Telangana, India

2. Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India

3. Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas 110 016, New Delhi, India

Abstract

We experimentally examine the coalescence dynamics of two ethanol drops of equal and unequal size, impacting a deep ethanol pool at low impact velocity using a high-speed shadowgraph. By altering the separation distance between the drops and their size ratios, different coalescence outcomes, such as total coalescence, interacting partial coalescence, and non-interacting partial coalescence, have been observed. Two distinct dynamics have been identified, namely, (i) when the primary drops coalesce first before the resulting conglomerate coalesces into the liquid pool and (ii) when the drops coalesce in the liquid pool separately, resulting in capillary waves interaction and affecting the coalescence outcomes. We also observe another fascinating phenomenon for certain parameters as the satellite drops coalesce as they ascend from the liquid pool. It is found that the coalescence time delay between the drops influences the size of the secondary drops by changing the dynamics from the interacting to non-interacting partial coalescence behavior at the coalescence time delay of 1.31. Our results also indicate that when the normalized separation distance between the dispensing needles is greater than 3.2, the capillary waves produced from both the drops do not interact, and the drops exhibit a usual partial coalescence like two single individual drops.

Funder

Science and Engineering Research Board

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3