Multi-objective optimization of multiple droplet impacts on a molten PCM using NSGA-II optimizer and artificial neural network

Author:

Faghiri Shahin,Poureslami Parham,Partovi Aria Hadi,Shafii Mohammad Behshad

Abstract

AbstractEmbracing an interaction between the phase change material (PCM) and the droplets of a heat transfer fluid, the direct contact (DC) method suggests a cutting-edge solution for expediting the phase change rates of PCMs in thermal energy storage (TES) units. In the direct contact TES configuration, when impacting the molten PCM pool, droplets evaporate, provoking the formation of a solidified PCM area (A). Then, they reduce the created solid temperature, leading to a minimum temperature value (Tmin). As a novelty, this research intends to maximize A and minimize Tmin since augmenting A expedites the discharge rate, and by lowering Tmin, the generated solid is preserved longer, resulting in a higher storage efficacy. To take the influences of interaction between droplets into account, the simultaneous impingement of two ethanol droplets on a molten paraffin wax is surveyed. Impact parameters (Weber number, impact spacing, and the pool temperature) govern the objective functions (A and Tmin). Initially, through high-speed and IR thermal imaging, the experimental values of objective functions are achieved for a wide range of impact parameters. Afterward, exploiting an artificial neural network (ANN), two models are fitted to A and Tmin, respectively. Subsequently, the models are provided for the NSGA-II algorithm to implement multi-objective optimization (MOO). Eventually, utilizing two different final decision-making (FDM) approaches (LINMAP and TOPSIS), optimized impact parameters are attained from the Pareto front. Regarding the results, the optimum amount of Weber number, impact spacing, and pool temperature accomplished by LINMAP and TOPSIS procedures are 309.44, 2.84 mm, 66.89 °C, and 294.98, 2.78 mm, 66.89 °C, respectively. This is the first investigation delving into the optimization of multiple droplet impacts for TES applications.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3