Estimating thin-film thermal conductivity by optical pump thermoreflectance imaging and finite element analysis

Author:

Alajlouni Sami12ORCID,Lara Ramos David Alberto345,Maize Kerry12,Pérez Nicolás3ORCID,Nielsch Kornelius34ORCID,Schierning Gabi3ORCID,Shakouri Ali12

Affiliation:

1. Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA

2. Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA

3. Institute for Metallic Materials, IFW-Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany

4. Faculty of Mechanical Engineering, TU Dresden, George-Bähr-Strasse 3c, 01069 Dresden, Germany

5. Consejo Nacional de Ciencia y Tecnologia, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez 03940, CDMX, Mexico

Abstract

We introduce a noncontact experiment method to estimate thermal conductivity of nanoscale thin films by fitting high spatial resolution thermoreflectance images of surface spot heating to a finite element simulated temperature distribution. The thin-film top surface is heated by a [Formula: see text]m diameter focused, 825 nm wavelength laser spot. The surface temperature distribution in the excited sample is imaged by thermoreflectance microscopy with submicrometer spatial resolution and up to 10 mK temperature resolution. Thin-film thermal conductivity is extracted by fitting a measured surface temperature distribution to a 3D finite element temperature model. The method is demonstrated by estimating thermal conductivity for an isotropic thin-film metal (nickel, 60–260 nm) on a glass substrate. The fitted Ni thermal conductivity was 50 ± 5 W/m K, which is in good agreement with the literature. Also, we present a detailed finite element analysis for an anisotropic thin-film semiconductor sample to show how the method could be extended to estimate thermal conductivity of anisotropic thin films. Advantages of the new method are easy sample preparation (no top surface transducer film or integrated heater required), rapid in situ measurement, and application to a broad range of thin-film materials.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3