Affiliation:
1. Department of Physics, University of Nevada, Reno, Nevada 89557, USA
2. Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
Abstract
Plasma density measurements are key to a wide variety of high-energy-density (HED) and laboratory astrophysics experiments. We present a creative application of photonic Doppler velocimetry (PDV) from which time- and spatially resolved electron density measurements can be made. PDV has been implemented for the first time in close proximity, [Formula: see text] cm, to the high-intensity radiation flux produced by a z-pinch dynamic hohlraum on the Z-machine. Multiple PDV probes were incorporated into the photoionized gas cell platform. Two probes, spaced 4 mm apart, were used to assess plasma density and uniformity in the central region of the gas cell during the formation of the plasma. Electron density time histories with subnanosecond resolution were extracted from PDV measurements taken from the gas cells fielded with neon at 15 Torr. As well, a null shot with no gas fill in the cell was fielded. A major achievement was the low noise high-quality measurements made in the harsh environment produced by the mega-joules of x-ray energy emitted at the collapse of the z-pinch implosion. To evaluate time dependent radiation induced effects in the fiber optic system, two PDV noise probes were included on either side of the gas cell. The success of this alternative use of PDV demonstrates that it is a reliable, precise, and affordable new electron density diagnostic for radiation driven experiments and more generally HED experiments.
Funder
U.S. Department of Energy NNSA
Wootton Center for Astrophysical Plasma Properties under U.S. Department of Energy cooperative Agreement
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献