Radiatively cooled magnetic reconnection experiments driven by pulsed power

Author:

Datta R.1ORCID,Chandler K.2ORCID,Myers C. E.2ORCID,Chittenden J. P.3ORCID,Crilly A. J.3ORCID,Aragon C.2,Ampleford D. J.2ORCID,Banasek J. T.2ORCID,Edens A.2ORCID,Fox W. R.4ORCID,Hansen S. B.2ORCID,Harding E. C.2ORCID,Jennings C. A.2,Ji H.4ORCID,Kuranz C. C.5ORCID,Lebedev S. V.3ORCID,Looker Q.2ORCID,Patel S. G.2,Porwitzky A.2ORCID,Shipley G. A.2ORCID,Uzdensky D. A.6ORCID,Yager-Elorriaga D. A.2ORCID,Hare J. D.1ORCID

Affiliation:

1. Plasma Science and Fusion Center, Massachusetts Institute of Technology 1 , Cambridge, Massachusetts 02139, USA

2. Sandia National Laboratories 2 , Albuquerque, New Mexico 87123-1106, USA

3. Blackett Laboratory, Imperial College London 3 , London SW7 2BW, United Kingdom

4. Princeton Plasma Physics Laboratory 4 , Princeton, New Jersey 08543, USA

5. Department of Nuclear Engineering and Radiological Sciences, University of Michigan 5 , Ann Arbor, Michigan 48109, USA

6. Center for Integrated Plasma Studies, Physics Department, UCB-390, University of Colorado 6 , Boulder, Colorado 80309, USA

Abstract

We present evidence for strong radiative cooling in a pulsed-power-driven magnetic reconnection experiment. Two aluminum exploding wire arrays, driven by a 20 MA peak current, 300 ns rise time pulse from the Z machine (Sandia National Laboratories), generate strongly driven plasma flows (MA≈7) with anti-parallel magnetic fields, which form a reconnection layer (SL≈120) at the mid-plane. The net cooling rate far exceeds the Alfvénic transit rate (τcool−1/τA−1≫1), leading to strong cooling of the reconnection layer. We determine the advected magnetic field and flow velocity using inductive probes positioned in the inflow to the layer, and inflow ion density and temperature from analysis of visible emission spectroscopy. A sharp decrease in x-ray emission from the reconnection layer, measured using filtered diodes and time-gated x-ray imaging, provides evidence for strong cooling of the reconnection layer after its initial formation. X-ray images also show localized hotspots, regions of strong x-ray emission, with velocities comparable to the expected outflow velocity from the reconnection layer. These hotspots are consistent with plasmoids observed in 3D radiative resistive magnetohydrodynamic simulations of the experiment. X-ray spectroscopy further indicates that the hotspots have a temperature (170 eV) much higher than the bulk layer (≤75 eV) and inflow temperatures (about 2 eV) and that these hotspots generate the majority of the high-energy (>1 keV) emission.

Funder

National Science Foundation

National Nuclear Security Administration

National Aeronautics and Space Administration

Sandia National Laboratories

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3