Physical insights from imaginary-time density–density correlation functions

Author:

Dornheim Tobias12ORCID,Moldabekov Zhandos A.12ORCID,Tolias Panagiotis3ORCID,Böhme Maximilian124ORCID,Vorberger Jan2ORCID

Affiliation:

1. Center for Advanced Systems Understanding (CASUS) 1 , D-02826 Görlitz, Germany

2. Helmholtz-Zentrum Dresden-Rossendorf (HZDR) 2 , D-01328 Dresden, Germany

3. Space and Plasma Physics, Royal Institute of Technology (KTH) 3 , Stockholm SE-100 44, Sweden

4. Technische Universität Dresden 4 , D-01062 Dresden, Germany

Abstract

An accurate theoretical description of the dynamic properties of correlated quantum many-body systems, such as the dynamic structure factor S(q, ω), is important in many fields. Unfortunately, highly accurate quantum Monte Carlo methods are usually restricted to the imaginary time domain, and the analytic continuation of the imaginary-time density–density correlation function F(q, τ) to real frequencies is a notoriously hard problem. Here, it is argued that often no such analytic continuation is required because by definition, F(q, τ) contains the same physical information as does S(q, ω), only represented unfamiliarly. Specifically, it is shown how one can directly extract key information such as the temperature or quasi-particle excitation energies from the τ domain, which is highly relevant for equation-of-state measurements of matter under extreme conditions [T. Dornheim et al., Nat. Commun. 13, 7911 (2022)]. As a practical example, ab initio path-integral Monte Carlo results for the uniform electron gas (UEG) are considered, and it is shown that even nontrivial processes such as the roton feature of the UEG at low density [T. Dornheim et al., Commun. Phys. 5, 304 (2022)] are manifested straightforwardly in F(q, τ). A comprehensive overview is given of various useful properties of F(q, τ) and how it relates to the usual dynamic structure factor. In fact, working directly in the τ domain is advantageous for many reasons and opens up multiple avenues for future applications.

Funder

Sächsisches Staatsministerium für Wissenschaft und Kunst

Bundesministerium für Bildung und Forschung

Publisher

AIP Publishing

Subject

Electrical and Electronic Engineering,Nuclear Energy and Engineering,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3