Fermionic physics fromab initiopath integral Monte Carlo simulations of fictitious identical particles

Author:

Dornheim Tobias12ORCID,Tolias Panagiotis3ORCID,Groth Simon4,Moldabekov Zhandos A.12ORCID,Vorberger Jan2ORCID,Hirshberg Barak56ORCID

Affiliation:

1. Center for Advanced Systems Understanding (CASUS) 1 , D-02826 Görlitz, Germany

2. Helmholtz-Zentrum Dresden-Rossendorf (HZDR) 2 , D-01328 Dresden, Germany

3. Space and Plasma Physics, Royal Institute of Technology (KTH) 3 , Stockholm SE-100 44, Sweden

4. Christian-Albrechts-Universität zu Kiel 4 , D-24098 Kiel, Germany

5. School of Chemistry, Tel Aviv University 5 , Tel Aviv 6997801, Israel

6. The Center for Computational Molecular and Materials Science, Tel Aviv University 6 , Tel Aviv 6997801, Israel

Abstract

The ab initio path integral Monte Carlo (PIMC) method is one of the most successful methods in statistical physics, quantum chemistry and related fields, but its application to quantum degenerate Fermi systems is severely hampered by an exponential computational bottleneck: the notorious fermion sign problem. Very recently, Xiong and Xiong [J. Chem. Phys. 157, 094112 (2022)] have suggested to partially circumvent the sign problem by carrying out simulations of fictitious systems guided by an interpolating continuous variable ξ ∈ [−1, 1], with the physical Fermi- and Bose-statistics corresponding to ξ = −1 and ξ = 1. It has been proposed that information about the fermionic limit might be obtained by calculations within the bosonic sector ξ > 0 combined with an extrapolation throughout the fermionic sector ξ < 0, essentially bypassing the sign problem. Here, we show how the inclusion of the artificial parameter ξ can be interpreted as an effective penalty on the formation of permutation cycles in the PIMC simulation. We demonstrate that the proposed extrapolation method breaks down for moderate to high quantum degeneracy. Instead, the method constitutes a valuable tool for the description of large Fermi-systems of weak quantum degeneracy. This is demonstrated for electrons in a 2D harmonic trap and for the uniform electron gas (UEG), where we find excellent agreement (∼0.5%) with exact configuration PIMC results in the high-density regime while attaining a speed-up exceeding 11 orders of magnitude. Finally, we extend the idea beyond the energy and analyze the radial density distribution (2D trap), as well as the static structure factor and imaginary-time density–density correlation function (UEG).

Funder

HORIZON EUROPE European Research Council

Sächsisches Staatsministerium für Wissenschaft und Kunst

Bundesministerium für Bildung und Forschung

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3