ManyHF-based full-dimensional potential energy surface development and quasi-classical dynamics for the Cl + CH3NH2 reaction

Author:

Szűcs Tímea1ORCID,Czakó Gábor1ORCID

Affiliation:

1. MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged , Rerrich Béla tér 1, Szeged H-6720, Hungary

Abstract

A full-dimensional spin–orbit (SO)-corrected potential energy surface (PES) is developed for the Cl + CH3NH2 multi-channel system. Using the new PES, a comprehensive reaction dynamics investigation is performed for the most reactive hydrogen-abstraction reactions forming HCl + CH2NH2/CH3NH. Hartree–Fock (HF) convergence problems in the reactant region are handled by the ManyHF method, which finds the lowest-energy HF solution considering several different initial guess orbitals. The PES development is carried out with the Robosurfer program package, which iteratively improves the surface. Energy points are computed at the ManyHF-UCCSD(T)-F12a/cc-pVDZ-F12 level of theory combined with basis set (ManyHF-RMP2-F12/cc-pVTZ-F12 – ManyHF-RMP2-F12/cc-pVDZ-F12) and SO (MRCI+Q/aug-cc-pwCVDZ) corrections. Quasi-classical trajectory simulations show that the CH3-side hydrogen abstraction occurs more frequently in contrast to the NH2-side reaction. In both cases, the integral cross sections decrease with increasing collision energy (Ecoll). A reaction mechanism shifting from indirect to direct stripping can be observed from the opacity functions, scattering angle, and translation energy distributions as Ecoll increases. Initial attack angle distributions reveal that chlorine prefers to abstract hydrogen from the approached functional group. The collision-energy dependence of the product energy distributions shows that the initial translational energy mainly transfers to product recoil. The HCl vibrational and rotational energy values are comparable and nearly independent of collision energy, while the CH2NH2 and CH3NH co-products’ vibrational energy values are higher than the rotational energy values with more significant Ecoll dependence. The HCl(v = 0) rotational distributions are compared with experiment, setting the direction for future investigations.

Funder

National Research, Development and Innovation Office

Ministry of Innovation and Technology of Hungary

Momentum Program of the Hungarian Academy of Sciences

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3