Automated potential energy surface development and comprehensive dynamics for the F + CH3NH2 reaction

Author:

Szűcs Tímea1ORCID,Czakó Gábor1ORCID

Affiliation:

1. MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged , Rerrich Béla tér 1, Szeged H-6720, Hungary

Abstract

This work is an extensive investigation of the F + CH3NH2 reaction dynamics using a newly-developed potential energy surface (PES). The full-dimensional spin–orbit (SO) corrected (MRCI+Q/aug-cc-pwCVDZ) PES is developed by the Robosurfer program package and the ManyHF method is used in order to fix the Hartree–Fock (HF) convergence issues in the entrance channel. On the surface, retrieved by the fitting of the iteratively extended set of the ManyHF-CCSD(T)-F12a/triple-zeta-quality and SO-corrected energy points, quasi-classical trajectory (QCT) simulations are run. By analyzing the opacity functions and integral cross sections (ICSs) of six reaction channels, the dynamics of the two most reactive hydrogen-abstraction reactions resulting in HF + CH2NH2/CH3NH products are selected for a thorough examination. Despite the statistically and thermodynamically expected results, the kinetically preferred amino hydrogen-abstraction is the dominant mechanism at low collision energies. The initial attack angle and scattering angle distributions are investigated as well. The post-reaction energy distributions show that the collision energy mostly converts into the translational energy of the products, while the reaction energy excites the vibration of the products. The computed vibrationally resolved rotational distributions and vibrational state distributions of the HF product are compared to experimental data, and the theory and experiment are found to be in good agreement.

Funder

National Research, Development and Innovation Office

Ministry of Innovation and Technology of Hungary

Momentum Program of the Hungarian Academy of Sciences

Publisher

AIP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3