Precision sub-monolayer manipulation of diamond surface chemistry using laser direct write oxidation in air

Author:

Moshkani Mojtaba1ORCID,Downes James E.1ORCID,Mildren Richard P.1ORCID

Affiliation:

1. MQ Photonics Research Centre, School of Mathematical and Physical Sciences, Macquarie University , Sydney, Australia

Abstract

Manipulation and patterning of diamond surface chemistry is of interest for a wide range of diamond-based technologies. We report the patterned oxidation of hydrogen-terminated diamond surfaces with sub-monolayer (ML) precision by a deep-UV two-photon process performed in air. Using focused laser pulses of photon energy 4.66 eV (266 nm; below the diamond bandgap of 5.47 eV), hydrogen-terminated (001) surfaces were exposed with calibrated doses to remove carbon with a precision of 0.02 ML. The measurement of the electrical properties of the laser-exposed zone between ohmic electrodes enabled monitoring of the transition from a conducting H-terminated surface to insulating O-terminated. The surface resistance increases by more than 7 orders of magnitude for doses corresponding to 0.5 ML, and the I–V characteristics show a transition from linear to nonlinear for doses above 0.30 ML. We show that this behavior agrees well with a surface percolation model for carrier diffusion in which the laser etch rate for the H-terminated top layer is the same as for O-terminated. Hence, this work reveals an ultra-precise method for modifying the sub-monolayer surface chemistry with the practical advantages of a laser-induced mechanism compared to conventional plasma or chemical processing methods.

Funder

Australian Research Council

Air Force Office of Scientific Research

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3