Approximate solutions of the advection–diffusion equation for spatially variable flows

Author:

Sun Yubiao1ORCID,Jayaraman Amitesh S.2ORCID,Chirikjian Gregory S.1

Affiliation:

1. Department of Mechanical Engineering, National University of Singapore, Singapore

2. Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA

Abstract

The advection–diffusion equation (ADE) describes many important processes in hydrogeology, mechanics, geology, and biology. The equations model the transport of a passive scalar quantity in a flow. In this paper, we have developed a new approach to solve incompressible advection–diffusion equations (ADEs) with variable convective terms, which are essential to study species transport in various flow scenarios. We first reinterpret advection diffusion equations on a microscopic level and obtain stochastic differential equations governing the behavior of individual particles of the species transported by the flow. Then, simplified versions of ADEs are derived to approximate the original ADEs governing concentration evolution of species. The approximation is effectively a linearization of the spatially varying coefficient of the advective term. These simplified equations are solved analytically using the Fourier transform. We have validated this new method by comparing our results to solutions obtained from the canonical stochastic sampling method and the finite element method. This mesh-free algorithm achieves comparable accuracy to the results from discrete stochastic simulation of spatially resolved species transport in a Lagrangian frame of reference. The good consistency shows that our proposed method is efficient in simulating chemical transport in a convective flow. The proposed method is computationally efficient and quantitatively reliable, providing an alternative technique to investigate various advection–diffusion processes.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3