Bandgap engineering and enhanced optical properties of Hf3X2O2 (X = N, P, As) novel 2D MXene structures using first-principles study

Author:

Rahman S. M. Mahbubur1,Hasan Khan Md. Sakib1ORCID,Islam Md. Rafiqul1ORCID

Affiliation:

1. Department of Electrical and Electronic Engineering (EEE), Khulna University of Engineering & Technology (KUET) , Khulna 9203, Bangladesh

Abstract

Two-dimensional (2D) MXenes, having comparable transport properties like graphene and a wide spectrum application, are often limited to being used in optoelectronics due to metallic bandgap. Here, by employing density functional theory we report the bandgap engineering and tuning optoelectronic properties through modulating the anions of novel 2D spinel Hf3X2O2 (X = N, P and As) MXenes structures and show that the material class can be among the few semiconducting MXenes. Phonon spectra and cohesive energies confirm that these structures are dynamically stable and chemically exothermic. Modulating anions X = N, P, and As in Hf3X2O2, the electronic bandgaps are found ∼0.46 eV for N, metallic for P, and ∼48 meV for As atoms, suggesting the semiconducting, metallic, and semi-metallic MXenes. The biaxial strains are incorporated to tune the features: In the Hf3N2O2 structure, the bandgap is increased with both compressive and tensile strains, while for the Hf3As2O2 structure, the gap decreased at the GGA-PBE level. For Hf3P2O2 structures, the bandgaps are all metallic irrespective of pristine or biaxial strain. Spin–orbit coupling SOC+GGA reveals that Hf3N2O2 is highly spin responsive while Hf3As2O2 shows semi-metal-to-metallic bandgap transition for pristine as well as biaxial strained conditions. From optical properties analysis, optical absorptions are found located in the visible spectral regions that are also highly receptive to biaxial strains. These properties we have unleashed for the novel Hf3X2O2 (X = N, P, As) semiconducting MXene, thus, show the potentiality of the utilization of the material class in nanoelectronics and optoelectronics applications.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3