Angle-of-attack characteristics of opposing jet for improving drag and heat reduction

Author:

Xu Haonan1ORCID,Li Xueying1ORCID,Ren Jing1

Affiliation:

1. Department of Energy and Power Engineering, Tsinghua University , Beijing 100084, China

Abstract

While the opposing jet technique has the potential to achieve efficient drag and heat reduction, it can be severely affected by the incoming angle of attack. To analyze the angle-of-attack characteristics of opposing jet for improving drag and heat reduction, a three-dimensional blunt model was studied under various jet stagnation pressure ratios and angles of attack using the verified numerical method. The results showed that the enhanced reattachment shock on the windward side resulted in a higher pressure and temperature rise, which led to the deterioration of drag and heat reduction. Under the influence of the incoming angle of attack, the recirculation vortex transformed into a longitudinal vortex, resulting in a slanted U-shaped distribution of the surface pressure coefficient and Stanton number. Increasing the jet stagnation pressure ratio widened the coverage of the recirculation vortex on both the windward and leeward sides, which brought an improvement in drag and heat reduction. The interaction between the incoming angle of attack and the opposing jet caused a double-peak distribution of Stanton number due to the recirculation vortex reattachment and the compression of the incoming flow. The inclined opposing jet could reduce the peak values of pressure coefficient and Stanton number when subjected to the incoming flow with an angle of attack by spreading the recirculation vortex along the windward side. There should exist an optimal inclination angle that can effectively reduce the peak caused by the compression of the incoming flow without generating an excessive peak due to the recirculation vortex reattachment.

Funder

Tsinghua University Initiative Scientific Research Program

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3