An anti-maser for mode cooling of a microwave cavity

Author:

Blank Aharon1ORCID,Sherman Alexander1ORCID,Koren Boaz1ORCID,Zgadzai Oleg1ORCID

Affiliation:

1. Schulich Faculty of Chemistry, Technion—Israel Institute of Technology , Haifa 3200003, Israel

Abstract

The maser, a microwave (MW) analog of the laser, is a well-established method for generating and amplifying coherent MW irradiation with ultralow noise. This is usually accomplished by creating a state of population inversion between two energy levels separated by MW frequency. Thermodynamically, such a state corresponds to a small but negative temperature. The reverse condition, where only the lower energy level is highly populated, corresponds to a very low positive temperature. In this work, we experimentally demonstrate how to generate such a state in condensed matter at moderate cryogenic temperatures. This state is then used to efficiently remove microwave photons from a cavity, continuously cooling it, well below its ambient temperature. Such an “anti-maser” device could be extremely beneficial for applications that would normally require cooling to millikelvin temperatures to eliminate any MW photons. For instance, superconducting MW quantum circuits (such as qubits and amplifiers) could, with the use of this device, operate efficiently at liquid helium temperatures.

Funder

Israel Science Foundation

Israel Innovation Authority

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Reference22 articles.

1. Microwave photonics with superconducting quantum circuits

2. Propagating quantum microwaves: towards applications in communication and sensing

3. A. Anferov , K.-H.Lee, F.Zhao, J.Simon, and D. I.Schuster, arXiv:2306.05883 [quant-ph] (2023).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3