Tailoring Coherent Microwave Emission from a Solid‐State Hybrid System for Room‐Temperature Microwave Quantum Electronics

Author:

Wang Kaipu1,Wu Hao1ORCID,Zhang Bo1,Yao Xuri1,Zhang Jiakai2,Oxborrow Mark3,Zhao Qing1

Affiliation:

1. Center for Quantum Technology Research and Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE) School of Physics Beijing Institute of Technology Beijing 100081 China

2. Xi'an Electronic Engineering Research Institute Xi'an 710100 China

3. Department of Materials Imperial College London South Kensington London SW7 2AZ UK

Abstract

AbstractQuantum electronics operating in the microwave domain are burgeoning and becoming essential building blocks of quantum computers, sensors, and communication devices. However, the field of microwave quantum electronics has long been dominated by the need for cryogenic conditions to maintain delicate quantum characteristics. Here, a solid‐state hybrid system, constituted by a photo‐excited pentacene triplet spin ensemble coupled to a dielectric resonator, is reported for the first time capable of both coherent microwave quantum amplification and oscillation at X band via the masing process at room temperature. By incorporating external driving and active dissipation control into the hybrid system, efficient tuning of the maser emission characteristics at ≈9.4 GHz is achieved, which is key to optimizing the performance of the maser device. The work not only pushes the boundaries of the operating frequency and functionality of the existing pentacene masers but also demonstrates a universal route for controlling the masing process at room temperature, highlighting opportunities for optimizing emerging solid‐state masers for quantum information processing and communication.

Funder

China Postdoctoral Science Foundation

Engineering and Physical Sciences Research Council

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3