Contagion dynamics in time-varying metapopulation networks with node’s activity and attractiveness

Author:

Zeng Lang12ORCID,Tang Ming23,Liu Ying4ORCID,Yeop Yang Seung1ORCID,Do Younghae1ORCID

Affiliation:

1. Department of Mathematics, Nonlinear Dynamics and Mathematical Application Center, Kyungpook National University 1 , Daegu 41566, Republic of Korea

2. School of Physics and Electronic Science, East China Normal University 2 , Shanghai 200241, China

3. Shanghai Key Laboratory of Multidimensional Processing, East China Normal University 3 , Shanghai 200241, China

4. School of Computer Science, Southwest Petroleum University 4 , Chengdu 610500, China

Abstract

The metapopulation network model is a mathematical framework used to study the spatial spread of epidemics with individuals’ mobility. In this paper, we develop a time-varying network model in which the activity of a population is correlated with its attractiveness in mobility. By studying the spreading dynamics of the SIR (susceptible-infectious-recovered)-type disease in different correlated networks based on the proposed model, we theoretically derive the mobility threshold and numerically observe that increasing the correction between activity and attractiveness results in a reduced mobility threshold but suppresses the fraction of infected subpopulations. It also introduces greater heterogeneity in the spatial distribution of infected individuals. Additionally, we investigate the impact of nonpharmaceutical interventions on the spread of epidemics in different correlation networks. Our results show that the simultaneous implementation of self-isolation and self-protection is more effective in negatively correlated networks than that in positively correlated or non-correlated networks. Both self-isolation and self-protection strategies enhance the mobility threshold and, thus, slow down the spread of the epidemic. However, the effectiveness of each strategy in reducing the fraction of infected subpopulations varies in different correlated networks. Self-protection is more effective in positively correlated networks, whereas self-isolation is more effective in negatively correlated networks. Our study will provide insights into epidemic prevention and control in large-scale time-varying metapopulation networks.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

National Research Foundation of Korea

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3