Ultrafast opto-magnetic effects induced by nitrogen-vacancy centers in diamond crystals

Author:

Sakurai Ryosuke1,Kainuma Yuta2ORCID,An Toshu2,Shigekawa Hidemi1,Hase Muneaki1ORCID

Affiliation:

1. Department of Applied Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Japan

2. School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292, Japan

Abstract

The current generation of quantum sensing technologies using color centers in diamond crystals is primarily based on the principle that the resonant microwave frequency of the luminescence between quantum levels of the nitrogen-vacancy (NV) center varies with temperature and electric and magnetic fields. This principle enables us to measure, for instance, magnetic and electric fields, as well as local temperature with nanometer resolution in conjunction with a scanning probe microscope (SPM). However, the time resolution of conventional quantum sensing technologies has been limited to microseconds due to the limited luminescence lifetime. Here, we investigate ultrafast opto-magnetic effects in diamond crystals containing NV centers to improve the time resolution of quantum sensing to sub-picosecond time scales. The spin ensemble from diamond NV centers induces an inverse Cotton–Mouton effect (ICME) in the form of a sub-picosecond optical response in a femtosecond pump–probe measurement. The helicity and quadratic power dependence of the ICME can be interpreted as a second-order opto-magnetic effect in which ensembles of NV electron spins act as a source for the ICME. The results provide fundamental guidelines for enabling high-resolution spatial-time quantum sensing technologies when combined with SPM techniques.

Funder

Core Research for Evolutional Science and Technology

Japan Society for the Promotion of Science

Publisher

AIP Publishing

Subject

Computer Networks and Communications,Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3