Femtosecond diffraction and dynamic high pressure science

Author:

Wark Justin S.1ORCID,McMahon Malcolm I.2ORCID,Eggert Jon H.3ORCID

Affiliation:

1. Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom

2. SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom

3. Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA

Abstract

Solid-state material at high pressure is prevalent throughout the Universe, and an understanding of the structure of matter under such extreme conditions, gleaned from x-ray diffraction, has been pursued for the best part of a century. The highest pressures that can be reached to date (2 TPa) in combination with x-ray diffraction diagnosis have been achieved by dynamic compression via laser ablation [A. Lazicki et al., Nature 589, 532–535 (2021)]. The past decade has witnessed remarkable advances in x-ray technologies, with novel x-ray Free-Electron-Lasers (FELs) affording the capacity to produce high quality single-shot diffraction data on timescales below 100 fs. We provide a brief history of the field of dynamic compression, spanning from when the x-ray sources were almost always laser-plasma based, to the current state-of-the art diffraction capabilities provided by FELs. We give an overview of the physics of dynamic compression, diagnostic techniques, and the importance of understanding how the rate of compression influences the final temperatures reached. We provide illustrative examples of experiments performed on FEL facilities that are starting to give insight into how materials deform at ultrahigh strain rates, their phase diagrams, and the types of states that can be reached. We emphasize that there often appear to be differences in the crystalline phases observed between the use of static and dynamic compression techniques. We give our perspective on both the current state of this rapidly evolving field and some glimpses of how we see it developing in the near-to-medium term.

Funder

Engineering and Physical Sciences Research Council

Lawrence Livermore National Laboratory

U.S. Department of Energy

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3