Bayesian experimental design and parameter estimation for ultrafast spin dynamics

Author:

Chen ZhantaoORCID,Peng Cheng,Petsch Alexander N,Chitturi Sathya R,Okullo Alana,Chowdhury Sugata,Yoon Chun Hong,Turner Joshua JORCID

Abstract

Abstract Advanced experimental measurements are crucial for driving theoretical developments and unveiling novel phenomena in condensed matter and materials physics, which often suffer from the scarcity of large-scale facility resources, such as x-ray or neutron scattering centers. To address these limitations, we introduce a methodology that leverages the Bayesian optimal experimental design paradigm to efficiently uncover key quantum spin fluctuation parameters from x-ray photon fluctuation spectroscopy (XPFS) data. Our method is compatible with existing theoretical simulation pipelines and can also be used in combination with fast machine learning surrogate models in the event that real-time simulations are unfeasible. Our numerical benchmarks demonstrate the superior performance in predicting model parameters and in delivering more informative measurements within limited experimental time. Our method can be adapted to many different types of experiments beyond XPFS and spin fluctuation studies, facilitating more efficient data collection and accelerating scientific discoveries.

Funder

National Energy Research Scientific Computing Center

Basic Energy Sciences

Publisher

IOP Publishing

Subject

Artificial Intelligence,Human-Computer Interaction,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3