Affiliation:
1. MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
Abstract
The near-cathode region plays a crucial role in exploring the transport characteristics of the transition from arc column to the hot cathode in atmospheric-pressure arc discharges because of the existing non-equilibrium phenomena. A one-dimensional unified model, including the near-cathode region and the cathode body, is developed for an argon arc discharge with the tungsten cathode at atmospheric pressure in this paper. The electrostatic model coupled with an external circuit in the near-cathode region is solved based on the implicit particle-in-cell coupled Monte Carlo collision method without any assumptions of thermal or ionization equilibrium or quasi-neutrality. A detailed description of the arc plasma–cathode and cathode–gas interactions is obtained by calculating the nonlinear heat conduction equation in the cathode. It is shown that the space-charge sheath strongly affects particle transport in the near-cathode region and energy transport from arc plasma to the thermionic cathode. The total current density has significant effects on the kinetic characteristics of arc plasma by feedback-like mechanisms. The Joule heating by the external circuit and charged particles deposited into the cathode are dominating mechanisms of energy transfer from the near-cathode region to the cathode, while energy loss by radiation is more significant compared with natural convection.
Funder
National Natural Science Foundation of China
Foundation for Innovative Research Groups of the National Natural Science Foundation of China
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献