Analysis of application range of simplified models for field to thermo-field to thermionic emission processes from the cathode

Author:

SUN 孙 Li 丽,DAI 代 Zhuo 卓,XU 徐 Ming 鸣,WANG 王 Wei 伟,LI 李 Zengyao 增耀

Abstract

Abstract Electron emission plays a dominant role in plasma–cathode interactions and is a key factor in many plasma phenomena and industrial applications. It is necessary to illustrate the various electron emission mechanisms and the corresponding applicable description models to evaluate their impacts on discharge properties. In this study, detailed expressions of the simplified formulas valid for field emission to thermo-field emission to thermionic emission typically used in the numerical simulation are proposed, and the corresponding application ranges are determined in the framework of the Murphy–Good theory, which is commonly regarded as the general model and to be accurate in the full range of conditions of the validity of the theory. Dimensionless parameterization was used to evaluate the emission current density of the Murphy–Good formula, and a deviation factor was defined to obtain the application ranges for different work functions (2.5‒5 eV), cathode temperatures (300‒6000 K), and emitted electric fields (105 to 1010 V·m−1). The deviation factor was shown to be a nonmonotonic function of the three parameters. A comparative study of particle number densities in atmospheric gas discharge with a tungsten cathode was performed based on the one-dimensional implicit particle-in-cell (PIC) with the Monte Carlo collision (MCC) method according to the aforementioned application ranges. It was found that small differences in emission current density can lead to variations in the distributions of particle number density due to changes in the collisional environment. This study provides a theoretical basis for selecting emission models for subsequent numerical simulations.

Funder

National Natural Science Foundation of China

Scientific Research Program Funded by Shaanxi Provincial Education Department

Foundation for Innovative Research Groups of the National Natural Science Foundation of China

Natural Science Basic Research Plan of Shaanxi Province

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3