Wave drag and wave patterns by ships moving in a single-file formation

Author:

Zhu FengshenORCID,Yuan Zhi-mingORCID

Abstract

To minimize energy expenditure for each individual, animals adopt distinctive formations, such as fish schooling, “V” formation by flying birds, and single-file formation by waterfowls. The phenomenon of ducklings following their mothers in a single-file configuration has been revealed by the mechanisms of wave-riding and wave-passing. Drawing inspiration from this phenomenon, an investigation is undertaken on ships moving in a single-file formation. The objective is to quantify how much energy can be saved in different configurations. In this study, a three-dimensional boundary element method incorporating linear free-surface boundary conditions is used to obtain the wave drag and wave patterns. It is found that when constructive wave interference occurs in a two-ship formation, the wave resistance of the trailing ship increases and the leading ship experiences a decrease in its wave drags, especially when the two ships are in close proximity. Mutual benefit arises when destructive wave interference occurs between two ships. In addition, increasing the size of the trailing vessel facilitates the effect of wave-riding by the leading ship, but this effect becomes less pronounced as the speed increases. In a multi-ship formation configuration, changing the size of the leading ship will have a localized effect on the wave-passing, but the fleet will eventually tend to a dynamic equilibrium. When the position of the first trailing vessel is changed, there is similarly a localized effect on the wave-passing. Adjusting the first trailing ship to the position of the constructive wave interference is not favorable to reducing its own drag but enhances the wave-riding effect of its close follower. Finally, to achieve wave-passing, the trailing ship does not necessarily have to occupy an optimum position. This can still be accomplished if the trailing ship moves backward by an integer multiple of wavelength.

Funder

China Scholarship Council

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3