Surface engineering of metallic nanocrystals via atomic structure and composition control for boosting electrocatalysis

Author:

Whang Youngjoo1ORCID,Kwon Yongmin1ORCID,Ahn Hojin1,Hong Jong Wook2ORCID,Han Sang Woo1ORCID

Affiliation:

1. Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST 1 , Daejeon 34141, Republic of Korea

2. Department of Chemistry, University of Ulsan 2 , Ulsan 44776, Republic of Korea

Abstract

Since the clean energy industry emerged, developing efficient nanocrystal catalysts has attracted ever-increasing attention. Recently, the utilization of metal nanocrystals as catalysts for electrochemical reactions is entering a new era with the development of theories and techniques that help incorporate surface chemistry into nanoscale materials. Current approaches in the field of nanocrystal catalysts include detailed analyses and modifications of the surface atoms of nanocrystals, with which optimal structures and compositions for target electrochemical reactions could be realized. This review presents two major strategies to engineer the surface structure of nanocrystals: control over the atomic arrangement and composition of nanocrystal surfaces. The first section mainly covers the modification of surface atom arrangements with various methods, including the induction of various facets, strains, and defects. The generation of anomalous crystal structures of nanocrystals is also discussed. The second section encompasses recent advances in controlling the composition of nanocrystal surfaces by bringing high entropy or periodicity to the metal elements in nanocrystals to attain high electrocatalytic activity and stability.

Funder

National Research Foundation of Korea

Publisher

AIP Publishing

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3