Propagation characteristics of relativistic ultrashort laser pulse in inhomogeneous plasma

Author:

Zhang Xiao-Bo1,Huang Mao1,Tang Rong-An1,Zhang Ai-Xia1,Xue Ju-Kui1ORCID

Affiliation:

1. Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China

Abstract

We study the propagation of a relativistic ultrashort laser pulse in two-dimensional inhomogeneous plasma with a density ripple based on the theoretical analysis and the particle-in-cell simulation. An analytical solution of the laser pulse propagating in the homogeneous plasma is completely obtained. It is found that the stable propagation of the relativistic ultrashort laser pulse in homogeneous plasma can be realized, and the propagation distance and intensity of the laser pulse and the spatial distribution of electron density can be effectively modulated by adjusting the pulsewidth of the incident laser and the plasma frequency. More interestingly, in the inhomogeneous plasma with a density ripple, when the wave amplitude of the density ripple is less than a critical value, the intensity of the ultrashort laser pulse is almost unchanged and the propagation characteristics of the laser in the inhomogeneous plasma are basically consistent with those in the homogeneous plasma. However, when the wave amplitude of the density ripple is larger than the critical value, the inhomogeneity of the plasma has an obvious effect on the laser characteristics, and the intensity and the spatial distribution of the laser pulse will be modulated by the plasma density ripple. The influence of the laser pulsewidth, plasma density, and plasma density ripple on the laser characteristics is discussed in detail.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Gansu Province

Scientific Research Project of Gansu Higher Education

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3