Radially polarized femtosecond laser interaction with unmagnetized plasma slab and symmetric modes for enhanced terahertz field generation

Author:

Sagar Himank1,Sharma Suresh C.1

Affiliation:

1. Department of Applied Physics Delhi Technological University Delhi India

Abstract

AbstractWe consider the excitation of terahertz (THz) electromagnetic fields by interaction of radially polarized laser pulses of diverse profiles with a homogenous plasma density slab. We utilize the properties of the laser pulse to generate THz fields in a plasma slab. It is shown that the radial ponderomotive force exerted by laser imparts an oscillatory velocity to plasma electrons and drives a nonlinear current in azimuthal direction exciting THz electromagnetic fields in the plasma slab. The dependence of the excited radial electric field and azimuthal magnetic field on axial and radial parameters of the plasmas lab, as well as on the slab thickness and laser pulse width size, is investigated. It is demonstrated that the terahertz fields are generated most efficiently with a frequency close to the plasma frequency. It is also shown that the intensity of the excited fields may be optimized and controlled by the plasma slab and laser pulse parameters. Rectangular‐triangular, super‐Gaussian, and sinusoidal lasers exhibit a significantly steeper radial gradient of ponderomotive potential in comparison with other laser profiles, and excite intense radial electric fields and generate azimuthal magnetic fields in plasma slab. The numerical results closely follow the scaling laws and match with previous experimental and simulation results.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3