Hematocrit skewness along sequential bifurcations within a microfluidic network induces significant changes in downstream red blood cell partitioning

Author:

Pskowski Andrew1ORCID,Bagchi Prosenjit2ORCID,Zahn Jeffrey D.1ORCID

Affiliation:

1. Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA

2. Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA

Abstract

There has been a wealth of research conducted regarding the partitioning of red blood cells (RBCs) at bifurcations within the microvasculature. In previous studies, partitioning has been characterized as either regular partitioning, in which the higher flow rate daughter channel receives a proportionally larger percentage of RBCs, or reverse partitioning, in which the opposite occurs. While there are many examples of network studies in silico, most in vitro work has been conducted using single bifurcation. When microfluidic networks have been used, the channel dimensions are typically greater than 20  μm, ignoring conditions where RBCs are highly confined. This paper presents a study of RBC partitioning in a network of sequential bifurcations with channel dimensions less than 8  μm in hydraulic diameter. The study investigated the effect of the volumetric flow rate ratio ( Q*) at each bifurcation, solution hematocrit, and channel length on the erythrocyte flux ratio ( N*), a measure of RBC partitioning. We report significant differences in partitioning between upstream and downstream bifurcations even when the flow rate ratio remains the same. Skewness analysis, a measure of cell distribution across the width of a vessel, strongly suggests that immediately following the first bifurcation most RBCs are skewed toward the inner channel wall, leading to preferential RBC perfusion into one daughter channel at the subsequent bifurcation even at higher downstream flow rate ratios. The skewness of RBC distribution following the first bifurcation can either manifest as enhanced regular partitioning or reverse partitioning at the succeeding branch.

Funder

National Science Foundation

Publisher

AIP Publishing

Subject

Condensed Matter Physics,General Materials Science,Fluid Flow and Transfer Processes,Colloid and Surface Chemistry,Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3