Partitioning of dense RBC suspensions in single microfluidic bifurcations: role of cell deformability and bifurcation angle

Author:

Stathoulopoulos AntoniosORCID,Passos AndreasORCID,Kaliviotis EfstathiosORCID,Balabani StavroulaORCID

Abstract

AbstractRed blood cells (RBCs) are a key determinant of human physiology and their behaviour becomes extremely heterogeneous as they navigate in narrow, bifurcating vessels in the microvasculature, affecting local haemodynamics. This is due to partitioning in bifurcations which is dependent on the biomechanical properties of RBCs, especially deformability. We examine the effect of deformability on the haematocrit distributions of dense RBC suspensions flowing in a single, asymmetric Y-shaped bifurcation, experimentally. Human RBC suspensions (healthy and artificially hardened) at 20% haematocrit (Ht) were perfused through the microchannels at different flow ratios between the outlet branches, and negligible inertia, and imaged to infer cell distributions. Notable differences in the shape of the haematocrit distributions were observed between healthy and hardened RBCs near the bifurcation apex. These lead to more asymmetric distributions for healthy RBCs in the daughter and outlet branches with cells accumulating near the inner channel walls, exhibiting distinct hematocrit peaks which are sharper for healthy RBCs. Although the hematocrit distributions differed locally, similar partitioning characteristics were observed for both suspensions. Comparisons with RBC distributions measured in a T-shaped bifurcation showed that the bifurcation angle affects the haematocrit characteristics of the healthy RBCs and not the hardened ones. The extent of RBC partitioning was found similar in both geometries and suspensions. The study highlights the differences between local and global characteristics which impact RBC distribution in more complex, multi-bifurcation networks.

Funder

RCUK | Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3