Continuous film spin–orbit torque characterization via four probe measurement

Author:

Poh H. Y.1ORCID,Ang C. C. I.1ORCID,Jin T. L.1ORCID,Tan F. N.1ORCID,Lim G. J.1ORCID,Wu S.1,Poh F.2,Lew W. S.1ORCID

Affiliation:

1. School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371

2. GLOBALFOUNDRIES Singapore Pte. Ltd., 60 Woodlands Industrial Park D St 2, Singapore 738406

Abstract

Spin–orbit torque (SOT) characterization techniques generally require the Hall cross that generally demands lithography resources and time. It is highly desirable to characterize SOT efficiencies with minimal sample processing time. Here, we demonstrate a lithography-free technique to determine the spin–orbit torque efficiency in a perpendicular magnetic anisotropy ferromagnetic heterostructure. By utilizing a customized four-point probe in a rhombus geometry, harmonic Hall measurement was performed on continuous films of a Pt/Co/Ti structure to characterize the spin–orbit torque efficiency. A correction factor, which is due to the non-uniform current distribution across the continuous film, was experimentally evaluated by taking the ratio of the measured damping-like field of the continuous film to that of a fabricated Hall device. Additionally, this correction factor is analytically derived and experimentally shown to be determined by the configuration of the probes and is independent of the structure material. Our measurement reveals that by performing a single calibration process for the particular set of probes, the same correction factor was validated on a second ferromagnetic heterostructure, Ti/Pt/Co/Ta; hence, it can be applied to other SOT films' stack measurements. Our four-probe harmonic Hall technique provides an alternative and swift way for SOT investigations by eliminating multiple lithography processes necessary in conventional approaches.

Funder

RIE2020 ASTAR AME IAF-ICP

EDP-IPP

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3