Assessing the dynamics of CO adsorption on Cu(110) using the vdW-DF2 functional and artificial neural networks

Author:

Gonzalez Federico J.1ORCID,Seminara Giulia N.1,López Miranda I.1ORCID,Lombardi Juan M.1ORCID,Ramos Maximiliano1ORCID,Tachino Carmen A.1ORCID,Martínez Alejandra E.1ORCID,Busnengo H. Fabio1ORCID

Affiliation:

1. Grupo de Fisicoquímica en Interfaces y Nanoestructuras, Instituto de Física Rosario (IFIR), CONICET-UNR , Bv. 27 de Febrero 210 bis, S2000EKF Rosario, Argentina

Abstract

In this work, we revisit the dynamics of carbon monoxide molecular chemisorption on Cu(110) by using quasi-classical trajectory calculations. The molecule–surface interaction is described through an atomistic neural network approach based on Density Functional Theory calculations using a nonlocal exchange–correlation (XC) functional that includes the effect of long-range dispersion forces: vdW-DF2 [Lee et al. Phys. Rev. B, 82, 081101 (2010)]. With this approach, we significantly improve the agreement with experiments with respect to a similar previous study based on a semi-local XC functional. In particular, we obtain excellent agreement with molecular beam experimental data concerning the dependence of the initial sticking probability on surface temperature and impact energy at normal incidence. For off-normal incidence, our results also reproduce two trends observed experimentally: (i) the preferential sticking for molecules impinging parallel to the [1̄10] direction compared to [001] and (ii) the change from positive to negative scaling as the impact energy increases. Nevertheless, understanding the origin of some remaining quantitative discrepancies with experiments requires further investigations.

Funder

Agencia Nacional de Promoción Científica y Tecnológica

Consejo Nacional de Investigaciones Científicas y Técnicas

Universidad Nacional de Rosario

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An overview about neural networks potentials in molecular dynamics simulation;International Journal of Quantum Chemistry;2024-05-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3