An overview about neural networks potentials in molecular dynamics simulation

Author:

Martin‐Barrios Raidel12ORCID,Navas‐Conyedo Edisel3ORCID,Zhang Xuyi45ORCID,Chen Yunwei45ORCID,Gulín‐González Jorge3ORCID

Affiliation:

1. Facultad de Física Universidad de La Habana La Habana Cuba

2. Univ. Bordeaux, CNRS, Bordeaux INP, ISM Talence France

3. Centro de Estudios de Matemática Computacional (CEMC) y Aula CIMNE‐UCI Universidad de Las Ciencias Informaticas (UCI) La Habana Cuba

4. Scientometrics & Evaluation Research Center (SERC) National Science Library (Chengdu), Chinese Academy of Sciences Sichuan China

5. Department of Information Resources Management, School of Economics and Management University of Chinese Academy of Sciences Beijing China

Abstract

AbstractAb‐initio molecular dynamics (AIMD) is a key method for realistic simulation of complex atomistic systems and processes in nanoscale. In AIMD, finite‐temperature dynamical trajectories are generated by using forces computed from electronic structure calculations. In systems with high numbers of components a typical AIMD run is computationally demanding. On the other hand, machine learning (ML) is a subfield of the artificial intelligence that consist in a set of algorithms that show learning by experience with the use of input and output data where algorithms are capable of analysing and predicting the future. At present, the main application of ML techniques in atomic simulations is the development of new interatomic potentials to correctly describe the potential energy surfaces (PES). This technique is in constant progress since its inception around 30 years ago. The ML potentials combine the advantages of classical and Ab‐initio methods, that is, the efficiency of a simple functional form and the accuracy of first principles calculations. In this article we review the evolution of four generations of machine learning potentials and some of their most notable applications. This review focuses on MLPs based on neural networks. Also, we present a state of art of this topic and future trends. Finally, we report the results of a scientometric study (covering the period 1995–2023) about the impact of ML techniques applied to atomistic simulations, distribution of publications by geographical regions and hot topics investigated in the literature.

Funder

Université de Bordeaux

Chinese Academy of Sciences

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3