Dynamic behavior of compound droplets with millimeter-sized particles impacting substrates with different wettabilities

Author:

Xing LeiORCID,Li JinyuORCID,Jiang MinghuORCID,Zhao LixinORCID

Abstract

The dynamic behavior of compound droplets, which are made up of a millimeter-sized particle and distilled water, impacting substrates of different wettabilities is investigated via high-speed photography. The effects of the size of the particle within the compound droplet, substrate contact angle, and impact height on the deformation of the droplets and the characteristics of the impact are analyzed. It is found that the collisions of compound droplets with substrates can be classified into four categories based on the observed experimental phenomena that occur during the impact. These categories are referred to as adhesion collision, rebound collision, daughter-droplet collision (or partial rebound collision), and breakup collision. We consider both the impact of water droplets and compound droplets (with one of two different-sized particles) on substrates of different wettabilities. The effects of inertia, surface tension, and adhesion between the substrate and the liquid droplet, and adhesion between the particle and the liquid droplet are considered to explain the different collision phenomena of compound droplets and reveal the evolution mechanism of the droplet morphologies in the experiments. Furthermore, the effects of the height from which the droplet is released and the contact angle of the substrate (i.e., its wettability) on the maximum spreading diameter and maximum jet height of the droplet are presented quantitatively. The effect of the size of the particle within the compound droplet and the substrate contact angle on the dynamic behavior of the compound droplet subject to impact with the substrate is also described.

Funder

the Key Project of Regional Innovation and Development Joint Fund of the National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province

the Key Laboratory of the Ministry of Education for Improving Oil and Gas Recovery

Cultivation Foundation of Northeast Petroleum University for NSFC

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3