Fundamental patterns of signal propagation in complex networks

Author:

Hu Qitong123ORCID,Zhang Xiao-Dong123ORCID

Affiliation:

1. School of Mathematical Sciences, Shanghai Jiao Tong University 1 , Shanghai 200240, China

2. Ministry of Education (MOE) Funded Key Lab of Scientific and Engineering Computing, Shanghai Jiao Tong University 2 , Shanghai 200240, China

3. Shanghai Center for Applied Mathematics, Shanghai Jiao Tong University 3 , Shanghai 200240, China

Abstract

Various disasters stem from minor perturbations, such as the spread of infectious diseases and cascading failure in power grids. Analyzing perturbations is crucial for both theoretical and application fields. Previous researchers have proposed basic propagation patterns for perturbation and explored the impact of basic network motifs on the collective response to these perturbations. However, the current framework is limited in its ability to decouple interactions and, therefore, cannot analyze more complex structures. In this article, we establish an effective, robust, and powerful propagation framework under a general dynamic model. This framework reveals classical and dense network motifs that exert critical acceleration on signal propagation, often reducing orders of magnitude compared with conclusions generated by previous work. Moreover, our framework provides a new approach to understand the fundamental principles of complex systems and the negative feedback mechanism, which is of great significance for researching system controlling and network resilience.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3