Where are the coexisting parallel climates? Large ensemble climate projections from the point of view of chaos theory

Author:

Herein M.12ORCID,Tél T.12ORCID,Haszpra T.12ORCID

Affiliation:

1. ELKH-ELTE Theoretical Physics Research Group 1 , Pázmány P. stny. 1/A, H-1117 Budapest, Hungary

2. Department of Theoretical Physics, Eötvös University 2 , Pázmány P. stny. 1/A, H-1117 Budapest, Hungary

Abstract

We review the recent results of large ensemble climate projections considering them to be the simulations of chaotic systems. The quick spread of an initially localized ensemble in the first weeks after initialization is an appearance of the butterfly effect, illustrating the unpredictability of the dynamics. We show that the growth rate of uncertainty (an analog of the Lyapunov exponent) can be determined right after initialization. The next phase corresponds to a convergence of the no longer localized ensemble to the time-dependent climate attractor and requires a much longer time. After convergence takes place, the ensemble faithfully represents the climate dynamics. Concerning a credible simulation, the observed signal should then wander within the spread of the converged ensemble all the time, i.e., to behave just as any of the ensemble members. As a manifestation of the chaotic-like climate dynamics, one can imagine that beyond the single, observed time-dependent climate, a plethora of parallel climate realizations exists. Converged climate ensembles also define the probability distribution by which the physical quantities of the different climate realizations occur. Large ensemble simulations were shown earlier to be credible in the sense formulated. Here, in addition, an extended credibility condition is given, which requires the ensemble to be a converged ensemble, valid also for low-dimensional models. Interestingly, to the best of our knowledge, no low-order physical or engineering systems subjected to time-dependent forcings are known for which a comparison between simulation and experiment would be available. As illustrative examples, the CESM1-LE climate model and a chaotic pendulum are taken.

Funder

National Research, Development and Innovation Office

Janos Bolyai Research Scholarship

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3